Planetare Migration
Der Begriff planetare Migration bezeichnet die Bahnänderung eines Planeten während der Entstehung eines Planetensystems um einen Zentralstern. Da es sich um ein theoretisches Modell handelt, gibt es allerdings keine einheitliche Definition. Zustande kommt die planetare Migration durch eine komplexe Wechselwirkung eines Planeten mit seiner Umgebung (andere Planeten, Planetesimale, Gas einer protoplanetaren Scheibe). Durch zufällige Ereignisse auftretende Bahnänderungen, beispielsweise durch Kollisionen, fallen allerdings nicht unter den Begriff.
Die Entdeckung von Exoplanetensystemen, in denen jupiterähnliche Himmelskörper sternnahe Bahnen von nur einigen Sternradien besitzen (sog. „Hot Jupiters“, 51 Pegasi b besitzt eine große Halbachse von a = 0,05 AE), hat eine Diskussion über das Entstehungsmodell von Planetensystemen ausgelöst. Viele Astronomen sind der Meinung, dass Gasriesen ein paar astronomische Einheiten (AE) von dem Zentralgestirn entfernt, hinter der sogenannten Eislinie entstehen. Das ist diejenige Entfernung vom Zentralstern, ab der Wasserstoffverbindungen in fester Form existieren können. Im Entstehungsprozess müssten sich diese Planeten in Richtung Zentralgestirn bewegt haben.
Ein Erklärungsversuch, der ohne Migration auszukommen versucht, ist beispielsweise die „Jumping-Jupiter-Theorie“. Diese besagt, dass es durch das gleichzeitige Entstehen einiger Gasriesen in einem Planetensystem zu gravitativen Wechselwirkungen untereinander kommt. Simulationen zeigen, dass diese Prozesse zu instabilen Bahnen führen würden, zu Kollisionen der Planeten untereinander, Akkretion durch den Protostern oder auch zum Verlassen des Planetensystems, weswegen die Entstehung der Hot Jupiters auf diese Weise als unwahrscheinlich gilt.
Ein anderer Ansatz ist die planetare Migration. Diese beschreibt in der Entwicklung eines Planetensystems die Wechselwirkungen der protoplanetaren Scheibe mit dem Planeten selbst, was zu Bahnänderungen führen kann. Es gibt drei verschiedene Weisen, wie die Planetenscheibe mit dem Planeten wechselwirken kann. Diese sind in drei Typen der Migration unterteilt, die im unteren Abschnitt noch weiter erläutert werden. Zwar kann man mit der Migrationstheorie Bahnverkleinerungen (z. B. beim Jupiter) und Bahnvergrößerungen (z. B. bei Uranus und Neptun) während der Entstehungsphase die heutige Position der Planeten erklären , dennoch ist die Migration nur eine Theorie, die in der Fachwelt zwar allgemein anerkannt ist, aus Mangel an direkten Beobachtungsmöglichkeiten jedoch noch nicht direkt bewiesen werden konnte. Im Speziellen kann man die Migrationstheorie auch auf beispielsweise das Late Heavy Bombardment (LHB) oder die Herkunft der Trojaner anwenden und aus Simulationen brauchbare Ergebnisse ziehen.
Als Großes Bombardement wird eine Zeit während der Entwicklung des Sonnensystems bezeichnet, in der auf die noch jungen inneren Planeten (die Gesteinsplaneten Merkur, Venus, Erde, Mars) und den Erdmond zahlreiche große Asteroiden und andere Restkörper der Planetenbildung stürzten.
Diese Epoche wird auf die Zeit vor etwa 4,1 bis 3,8 Milliarden Jahren angesetzt. Sie hatte großen Einfluss auf die Oberflächengestalt des Mondes und auf die ersten Entwicklungsstufen des irdischen Lebens. Viele der einschlagenden Körper waren Planetesimale mit Größen zwischen 1 und 50 km.
Trojaner sind im weiteren Sinn Asteroiden, die einem Planeten in seiner Bahn um das Zentralgestirn vorauseilen bzw. folgen. Im engeren Sinne sind es die zwei Gruppen von Asteroiden, die die Sonne auf der gleichen Bahn wie der Jupiter umkreisen, ihm jedoch mit einem mittleren Abstand von 60° vorauseilen beziehungsweise nachfolgen
Standardmodell der Planetenentstehung
Der Ursprung dieser Theorie liegt in den sog. großen molekularen Wolken , die hauptsächlich aus Gas (99 % Wasserstoff, Helium) und Staub (Silikate, Kohlenstoff) bestehen und durch ihre Eigengravitation eine Kompression erfahren, bis sie schließlich in kleinere 'Kerne' fragmentieren. Solche Kerne können Ausdehnungen von einigen tausend AE erreichen und kollabieren schließlich nach dem Jeans-Kriterium. Es entsteht ein Protostern inmitten der Wolke, der die gravitativen Eigenschaften des Systems dominiert. Insbesondere handelt es sich für die umgebende Materie um ein Zentralkraftfeld, in dem Drehimpulserhaltung gilt. Diese verhindert zum Beispiel, dass die ganze Materie einfach in den Stern fällt, weil sie von ihm angezogen wird. Vielmehr entwickelt sich aus der Wolke nun eine stabile rotierende Scheibe (protoplanetare Scheibe), in der Drehimpuls durch die Viskosität von Turbulenzen und viskose Reibung von innen nach außen „transportiert“ werden kann
(in unserem Sonnensystem tragen Jupiter und Saturn zum Beispiel 99 % des gesamten Drehimpulses, während die Sonne nahezu die ganze Masse ausmacht)
So bewegen sich die inneren Teile der Scheibe weiter nach innen und werden schließlich vom Stern akkretiert, während die äußeren Teile durchaus von diesem Schicksal verschont bleiben können. Auf diese Weise entsteht ein komplexes hydrodynamisches System welches eine Sedimentation und Drift der nun immer stärker wachsenden Festkörper ermöglicht. Bei einer Größe von einigen Metern bis zu einigen Kilometern spricht man von Planetesimalen. Ab dieser Größe dominieren die Planetesimale durch ihre eigene Gravitation das Geschehen in ihrem Umfeld, zum Beispiel fangen sie umgebende, kleinere Planetesimale ein, und zwar immer effizienter, je größer sie werden (deswegen nennt man diese Phase „Runaway-Wachstum“). Irgendwann haben sich auf diese Weise einige wenige sog. planetare Embryonen gebildet, die ihre Umgebung gravitativ dominieren, und die Materie sowie Gas aus der protoplanetaren Scheibe (im Fall von Gasriesen) akkretieren (sogenanntes „oligarchisches Wachstum“ und Isolation der Embryonen). Jedoch müssen die Planeten nicht an dem Ort, an dem wir sie heute beobachten, entstanden sein. So beobachtete man zum Beispiel mit
51 Pegasi b einen jupiterähnlichen Gasriesen nur wenige Sternradien vom Zentralgestirn entfernt. Die Entstehung eines so massiven Objektes so nahe an einem Stern wäre mit diesen sogenannten in-situ-Theorien nur sehr schwer erklärbar, weswegen man annimmt, dass die Planeten in der Endphase ihrer Entstehung unter bestimmten Bedingungen Veränderungen ihrer Umlaufbahn erfahren können. Dieses Phänomen bezeichnet man als planetare Migration.
Die verschiedenen Arten der Migration werden von den meisten Astronomen in drei Typen eingeteilt:
Typ 1
Das Objekt (Planetesimal oder Planetenembryo) interagiert mit seinen selbst verursachten Dichtewellen, die entstehen, weil sich das umgebende Gas mit einer höheren Geschwindigkeit bewegt als der Keplerschen Umlaufgeschwindigkeit. Dies beschleunigt das Gas aufgrund der gravitativen Wirkung des Protoplaneten und es entstehen Druck- und Dichtewellen, die sich mit dem Protoplaneten bewegen. Wegen der Asymmetrie auf der sternab- bzw. zugewandten Seite resultiert dies in einer Nettokraft auf den Planeten, der seine Bahn verändert.
Typ 2
Protoplaneten öffnen durch Akkretion umliegender Materie eine Lücke in der Gasscheibe, es entsteht eine Region geringerer Dichte in der „feeding zone“ des Planeten. Der Protoplanet wird in dieser Lücke eingeschlossen. Da sich das Gas im Verlauf des Planetenentstehungsprozesses nach innen bewegt, folgt die Lücke nach und der Protoplanet migriert nach innen.
Typ 3
Instabilitäten in der Planetenscheibe (Wechselwirkungen zwischen den Planeten) führen zu einer Bahnabweichung innerhalb weniger Umläufe des Planeten.
Wenn ein Planet oder Planetesimal seine Bahn zu sehr ändert und aus dem System verlorengeht (also das Sonnensystem verlässt oder infolge der Verlangsamung der Umlaufgeschwindigkeit einwärts migriert und dem Stern / Protostern zum Opfer fällt), nennt man dies „violent migration“.
Jupiter
Wofür sich Jupiter zuständig zeigt und weshalb ihn unsere Astronomen so loben ist, dass er, auch hierzu muss er gerade zufällig an der richtigen Position stehen, durch seine enorme Schwerkraft in der Lage ist Asteroiden (und die gibt es nicht nur im Asteroidengürtel, die schwirren auch vereinzelt zwischen den anderen Gasriesen und im Kuiper-Gürtel herum), diese nach innen in Richtung zur Sonne abgelenkten Körper eventuell abzufangen, hinauszuschleudern, in sich "aufzusaugen", oder aber auch noch schneller in Richtung des Zentrums unseres Sonnensystems zu beschleunigen kann !
Doch das wird meistens unterschlagen, angesichts der Bilder vom "verschluckten" Kometen Shoemaker-Levy 9! Jupiter kann aufgrund seiner Hill-Spähre immer nur einen minimalen Bruchteil aller nach innen fliegenden Kleinkörper abfangen.
Für den mit Abstand größten Teil dieser Objekte steht Jupiter gerade jedesmal an der "falschen" Stelle und bewirkt somit gar nichts.
Reduziert die Wahrscheinlichkeit von Asteroiden Einschlägen auf den Planeten auf 10 - 100 Millionen Jahre. Ohne Jupiter 10 - 100 Tausend Jahre.
Die Hill-Sphäre, auch Hill-Raum, beschreibt die Umgebung eines Körpers, in der seine Gravitationskraft stärker ist, als die eines anderen, schwereren Körpers, den er umkreist. Das etwa kugelförmige Gebiet wurde nach dem in der theoretischen Astronomie wirkenden Mathematiker George William Hill benannt. Seine Arbeit beruhte vor allem auf den Schriften von Édouard Roche, so dass sie auch Roche-Sphäre genannt wird.
Die äußere Grenze der Hill-Sphäre hängt ab von:
der Gravitationskraft, die durch den Zentralkörper verursacht wird
der Gravitationskraft, die durch den umkreisenden Körper verursacht wird
der Zentrifugalkraft in einem mit dem umkreisenden Körper mitbewegten Bezugssystem.
Kometeneinschläge.... (später mehr)
Was kann ich mir darunter vorstellen ?
Kurz....ein grosser Stein fällt dir auf den Kopf
nun ja .. nun mal etwas genauer ...
Hier schlägt grade Shoemaker-Levy 9 auf dem Jupiter ein
sieht ja nicht besonders beeinduckend aus was
Hier eine Bombe mit der zerstörungskraft der Hiroschima Bombe ...zur Erinnerung .. das sind "nur" 16 Kilotonnen an Explosionskraft
Und nun der Vater aller Bomben .. die Zar - Bombe...natürlich von den Russen... das sind ca. 40 - 60 MEGATONNEN die da grade hochgehen
Die Schockwelle der Zar - Bombe ging 3 mal um die Erde
nun zurück zum ersten Vid.. der kleine Lichtblitz den ihr da seht ist ca. 13000 mal die Zar Bombe..
Da sieht man das erste Vid doch gleich mit ganz anderen Augen
Gut das der Jupiter da ist , wo er ist
MFG
Bak